STABILITY ALLOWANCES OF ELASTICOVISCOPLASTIC BODIES
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On the basis of three-dimensional linearized stability equations, the straining process of elas-
ticoviscoplastic bodies is investigated when they are compressed along the x; axis by forces

of intensity p and along the x, and x, axes by forces of intensity q. Precritical strains are
small and homogeneous. Stability of slabs is investigated as an example. A graphical depend-
ence of the critical loads on the properties and geometry of the slabs is presented.

1. In [1, 2] the general solutions of static and dynamic stability equations (3, 4] are presented for
hardening elasticoviscoplastic bodies when they are compressed along the x; axis.

The solutions presented here, analogously to the results obtained for elasticoviscoelastic and plastic
bodies {5, 6] in the case of small homogeneous precritical strains, allow us to investigate a broad class of
stability problems of elasticoviscoplastic bodies.

The stress—strain state of a three-dimensional body up to the loss of stability is given by the rela-
tionships
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The linearized stability equations [3, 4] are represented in the form
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where the differential operators have the form
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For a cylindrical body with a curvilinear contour of the cross section the general solution of stability
equations has the form
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Here by n and 7 we have denoted respectively the normal and the tangent to the contour of the cross
section,

The functions ¥ and ¥, are determined from the equations
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In the static formulation (s=0) the functions ‘I‘i are the solutions of the equations
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where the constants £f have the form
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In the case of plane strain (x;x3) the solution of the system of equations {1.2) can be represented in

the form
uy = Lgg ¥, u3= — Lu¥ 11.6)

The solution of Eq. (1.4), which is periodic with respect to the x4 axis, is written in the form

¥ = (Calet™ 4 Crlefe 4 Cplets 4 Crple ™) sin (yzy)

2 VT — Aw2 oy PS2(A 4 3u 4 aib — 29)

hyg =D 4 VI , D=A4v*4 2L —q) (A + 21 = a1b; —q)

popr_ WP A2 abs - P) ¥ —ps® (b + 3 + ashs — 2p) v* 0%t
- M —¢) (A 420 + by — q)

(¥=am/l; m=1,2,3,...,0)

(1.7)

The solution (1.7) satisfies the conditions of pin-jointed support at the ends in an integral sense.

2. We shall investigate the stability of straining of a slab of thickness 2h and length . It is assumed

that up to the instant of the loss of stability the stress—strain state of the slab is described by the relation-
ships (1.1), while at the instant of the loss of stability, strain occurs in the XX3 plane.

The boundary conditions on the side surface x;= =h lead to the relationships
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In the expressions (2.1) we must put r= q if the load q is a "dead" load; we must put r=0 if the load
is a "following" load.

From Egs. (1.7) and (2.1). with the condition that nonzero solutions exist, we obtain the transcendental
equations for the determination of the critical loads
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The relationships (2.2) and (2.3) are stability criteria respectively when the displacement u, is even
and odd with respect to x;.



For a thin plate the expansion of the trigonometric multipliers in a power series and neglecting the
compressibility of the material, in the case of a following load g, from (2.2) we obtain the algebraic equa-

tion

Bl—-—a+@+29)®lps*—7* 383U —q)(p+9) —
—aM3p+d—4b—qgl—p—g—a@} =0, y,=n/l, (2.4)

a="vh d=6/(2 4+ c+ )

Here all quantities having the dimensions of stress are referred to the quantity EA.
We rewrite (2.4) in the form
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An application of the Hurwitz criterion [7] shows that instability arises only if dy=0. Here the charac-
teristic index s passes into the right half-plane of the complex variable via s=0. For the critical load p

we have
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In the case of a dead load a static type of instability is possible [4]. For a thin plate from (2.2) we can
obtain the expression of the critical force p with accuracy up to «
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We shall investigate the effect of the properties of the material and the geometrical dimensions of the
slab on the mode of buckling and on the magnitude of the critical force. We assume that only a uniform com-
pressive force p{q=0) acts on the slab. As was shown, two modes of buckling are possible: lateral (2.2)
and barrel-shaped (2.3). Equations (2.2) and (2.3) in the static formulation were solved numerically on a
BESM-4 computer for various values of the parameters v, cy,and 2h/l; v is Poisson's ratio. ¢;=c/E.
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The dependence of the magnitude of the critical load p,= p/FE on the mode of buckling and the parame-

ters indicated above is presented in Fig. 1. The solid lines correspond to the lateral buckling, while the
dashed lines correspond to the barrel-shaped buckling. The curves with numbers 1, 2, 3 and 4, 5, 6 corres-
spond to the hardening coefficients ¢4 = 0.001 and 0.75. The curves with numbers 1,4 correspond to v = 0.2;
2.5 correspond to v = 0.3; 3,6 correspond to ¥ = 0.5, ¢{ = 0.0001 and 0.75. As is seen from Tig. 1, in the
case of small precritical strains no barrel-shaped buckling, in view of the limit critical loads, is observed.
The lateral buckling takes place for plates with the ratio 2h/! < 0.2 (Fig. 2). The solid lines correspond to
v = 0.5, the dashed lines correspond to v = 0.3, and the dash-dotted lines correspond to v = 0.2. For 2h/I >
0.2 the strength properties of the slabs are decisive.
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